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We analyze the phenomenon of particle creation in a cosmological anisotropic 
universe. We compute, via the Bogoliubov transformations, the density number 
of scalar and spin-l/2 particles created. We obtain that they are respectively 
described by Bose-Einstein and Fermi-Dirac distributions. 

I.  INTRODUCTION 

Quantum processes in curved space-time are undoubtedly among the 
most interesting and puzzling problems in theoretical physics. After the 
appearance of the pioneering article by Hawking about pair production in 
the vicinity of black holes, a great body of papers have been published, 
mainly trying to understand the mechanism that gives rise to the thermal 
particle distribution and its relation to thermodynamics. It is noteworthy that 
Hawking's result was preceded by a series of articles where the question 
was to discuss particle production in cosmological universes (Parker, 1968; 
Zeldovich and Stardoinskii, 1971). Almost all of the work in this area deals 
with isotropic and homogeneous gravitational backgrounds, mainly in de 
Sitter and Robertson-Walker models, and only a few try to discuss quantum 
processes in anisotropic universes. 

The study of quantum effects in gravitational backgrounds with initial 
singularities present an additional difficulty. The techniques commonly 
applied in order to define positive and negative particle frequencies fail, and 
a different approach is needed to circumvent the problem related to the initial 
singularity. In this direction, the Feynman path-integral method has been 
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applied to the quantization of a scalar field moving in the the Chitre-Hartle 
universe (Chitre and Hartle, 1977; Fischetti et al., 1979), which is a Robert- 
son-Walker background metric with scale factor R(t) = t. This model has a 
curvature singularity at t = 0 with the scalar curvature given by R = 6/t z, 
and it is perhaps the best-known example where a time singularity appears 
and consequently any adiabatic prescription in order to define particle states 
fails. A spin-l/2 extension has been considered by Sahni (1984). 

A different approach to the problem of classifying single-particle states 
on curved spaces is based on the idea of diagonalizing the Hamiltonian. This 
technique permits one to compute the mean number of particles produced 
by a singular cosmological model, and in particular by the Chitre-Hartle 
universe (Chitre and Hartle, 1977). 

An interesting scenario for discussing particle creation processes is the 
anisotropic universe associated with the metric 

ds 2 = - d t  2 + t2(dx 2 4- dy 2) + dz 2 (1) 

The line element (1) presents a timelike singularity at t = 0. The scalar 
curvature is R = 2/t 2, and consequently the adiabatic approach is not suitable 
for defining particle states. With the help of the Hamiltonian diagonalization 
method (Grib et al., 1988), it has been possible (Bukhbinder, 1980) to compute 
the rate of scalar particles produced in the space with the metric (1), obtaining 
as a result a Bose-Einstein distribution. It is the purpose of the present 
article to show that a quasiclassical approach can give a prescription for the 
identification of positive- and negative-frequency states in the vicinity of 
time singularities. We are going to compute the mean number of scalar and 
spin-l/2 particles produced in the universe described by the metric (1). The 
idea behind the method is the following: First, we solve the relativistic 
Hamilton-Jacobi equation and, looking at its solutions, we identify positive- 
and negative-frequency modes. Second, we solve the Klein-Gordon equation 
and, after comparing with the results obtained for the quasiclassical limit, 
we identify the positive- and negative-frequency states. This technique has 
been shown to be of help in analyzing quantum effects in accelerated frames 
of reference (Costa, 1989; Percoco and Villalba, 1992). 

The relativistic Hamilton-Jacobi equation can be written as 

OS OS 
g ~  Ox ~ Ox ~ m 2 = 0 (2) 

Since the metric g ~  given by (1) only depends on the time parameter t, the 
function S can be separated as 

S = F(t) + kxx + kyy + kzz (3) 



Particle Creation in a Cosmological Anisotropic Universe 1323 

Substituting (3) into (2), we obtain 

F 2 _ ~ l +  k 2 +kz  2 + m2 (4) 
12 

The solution of equation (4) presents the asymptotic behavior 

lim F = --+x/~z 2 + m2t, dO ~ C exp(-+iv/-~z 2 + m2t) (5) 
t--.-~oo 

as t ~ ~, and 

lim F = __+ x/kx 2 + k 2 log t, dO --~ Ct-*"~kl+kY %''2 (6) 
t---r0 

as t --~ 0, that is, in the initial singularity. Notice that the time dependence 
of the relativistic wave function is obtained via the exponential operation dO 
--~ exp(iS). Here it is worth mentioning that the behavior of positive- and 
negative-frequency states is selected depending on the sign of the operator 
iat. Positive-frequency modes will have positive eigenvalues and for negative- 
frequency states we will have the opposite. Then in equations (5) and (6) 
the upper signs are associated with negative-frequency values and the lower 
signs correspond to positive-frequency states. After making this identification 
we can analyze the solutions of the Klein-Gordon and Dirac equations in 
the background field (1). 

The covariant generalization of the Klein-Gordon equation takes the 
forrn 

g~V~V~dO - (m 2 + I~R)dO = 0 (7) 

where V,~ is the covariant derivative, R is the scalar curvature, and ~ is a 
dimensionless coupling constant which takes the value ~ = 1/6 in the confor- 
mal case, and ~ = 0 when a minimal coupling is considered. After substituting 
(1) into (7) we obtain 

Ot 2 Oz 2 t2 \ Ox z + OyZ } + m 2 + dO = 0 (8) 

Since equation (8) commutes with the operators iOx, iOy, iO z, we have that 
the substitution 

dO = t-  ldOoei(kxx+kyy+kzz) (9) 

reduces equation (8) to the ordinary second-order differential equation 

+ ? + + + + m 2 dOo = 0 (10) 
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which can be solved in terms of Bessel functions (Lebedev, 1972) 

~o = ~tZp( v/~z + m2t) (11) 

with 

p = � 8 9  + ix/k 2 + ~ + ~ -  1/4 (12) 

Looking at the asymptotic behavior of the Hankel functions as z ---> 

H(vl)(z) ~ ~ z  ei(z-v~rl2-~r/4), H(~2)(Z) ~ ~ z  e-i(z-v~r/2-~r/4) (13) 

and the behavior of the Bessel function at z = 0 

Z v 
J~(z) (14) 

2vF(v + 1) 

we have that the solution of equation (10), presenting an asymptotic behavior 
of the form (5), is 

C~ 
~0-~+~) = ~ Hp(x/k2 + m2t) (15) 

where C= is a normalization constant according to the standard inner product 
for the Klein-Gordon equation, the parameter p is given by (12), and the 
" + "  indicates that the solution (15) is a positive-frequency mode for large 
values of the time. 

Analogously, we have that in the vicinity of the singularity, looking at 
the quasiclassical solutions at t = 0, (6), the corresponding positive (+)- and 
negative (-)-frequency solutions take the form 

C ,  Co ' z  
dPo+(o) = ~ Jp(x/~z + m2t), ~ o )  = ~ J-p(~/kz + m 2t) (16) 

Since we have been able to obtain single-particle states in the vicinity of t 
= 0 as well as in the asymptote t ~ co, we can compute the density of 
particles created by the gravitational field with the help of the Bogoliubov 
coefficients (Grib et al., 1988; Birrel and Davies, 1982). In the present case 

+ we do not need to compute the integral 1[3ktl 2 = I(~k(+~), ~ff0))l 2 because 
of the recurrence relation existing between the Hankel and Bessel functions 
(Lebedev, 1972) 

H~2)(z) = i cos ec(vlr)(J_v(z) - e~iJ~(z)) (17) 

Then we have that the positive-frequency solution + ~0(+=) can be expressed 
in terms of ~&0) and ~ 0 )  as follows: 

+ 
(I)o(+~) = (~((I)ff(o) - eP"'(I)~o)) = adPff(o) + 13dP~o) (18) 
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where ~ is a constant. From the normalization of the wave functions �9 we 
have that 

Io~l 2 -11312= 1 (19) 

and, taking into account (17), we obtain 
2 K'I |  

~l = exp[-2~r Im(p)] = exp(-2"rrx/k~ z + ky z + { -  1/4) (20) 

Relation (20) shows (Mishima and Nakayama, 1988) that the density of scalar 
particles created is thermal. 

Now, we proceed to discuss the process of creation of spin-l/2 particles 
in the cosmological background (1). 

The Dirac equation in curved space can be written as 

(~'~(a~, - F~,) + m ) ~  = 0 (21)  

where ~/'~ are the curved Dirac matrices, which satisfy the commutation 
relations {~'~, ~,~}+ = 2g'*~, and expressed in the diagonal tetrad gauge can 
be written in the form 

,~0 = ,~0, ~1 = ff]l , ~2 = r , 213 = ~/3 (22) 
t t 

where ~M '~ are the standard gamma matrices satisfying the relation {~'~, ~a }+ 
= 2nq '~. The F,, are the spin connections (Brill and Wheeler, 1957), which 
for diagonal metrics reduce to 

F,~ = - •  .1-13 ~ v  (23) 4 op, p=vot 

where S ~ = �89 - ",ff~/~). Using the diagonal representation (22) for the 
curved Dirac matrices we obtain 

F 0 = 0, F 3 = 0 

FI = �89176 ~l, F2 = • (24) 2 

Since neither the Dirac matrices nor the metric depend on the space variables, 
it is possible to introduce the auxiliary spinor ~0: 

xtv = t-lXIro(t)ei(kxX+krY+kez) (25) 

where the factor t-  l was introduced in (25) in order to cancel the contribution 
due to the spinor connections (24). Then, after substituting (25) into (24) 
we have 

( , ) ~lOot + -t (~lkx + "~2kv) + i~13kz + m ~0 = 0 (26) 
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Notice that equation (26) is a system of coupled ordinary differential equations 
in the time variable. We can rewrite equation (26) as follows (Shishkin and 
Villalba, 1989) 

(/~, + ~'z)~ = 0 (27) 

with 

K20 = ( ik~l  I + iky~2)~13~~ = k O  (28) 

KLO = t(~~ + i~3kz q- m)~3~~ = - k O  

where O = ",/3~/~ 0, and the constant of separation k = i ~  2 + k 2. The 
equation/~20 = kO establishes an algebraic relation among the components 
of the spinor O. 

After introducing the following representation for the Dirac matrices: 

~/o = (i03 i~ ~1 = (o.O tYl 

(29) 

we have that, with the help of equation (28), we reduce the problem of 
solving the Dirac equation (21) in the metric (1) to that of  finding exact 
solutions of the coupled system of equations 

-s + t 01 + ( im - kz)~302 (30) 

-s - t 0 2  + (ira + kz)~301 (31) 

where the spinor 0 has the block structure 

( ~ / 
with 

Ol \ - '2 ]  (33) 

t 2 + (kz 2 + m 2) "-1,2 = 0 (34) 

Substituting (30) into (31) and vice versa, we get 
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with k = ix/~-~ 2 + k 2. This Bessel equation (34) has as solution the expression 

v~tZk+l/2(x/~z + m2t) (35) 

where the type of Bessel function to be considered depends on the value of 
t. For large values in time (t --) oo), the positive-frequency solutions are 

~_{(+~) = v/ttH~Z2u2( v~z + mZt) 

=+ k z + i m  
-2(+~) = ~ v~tH~Z)-u2(V~z + m2t) (36) 

and in the vicinity of the initial singularity (t --) O) we have 

~ o ,  = v~tJ-*-,/z(v/-~z + m2t) 

k z + i m  
-=~0) = ~ v/tJ-k+v2(x/~-z + m2t) (37) 

In both cases, the choice of the modes was based on a comparison with the 
quasiclassical behavior given by equations (5) and (6). 

Now, using the relation between the Hankel and Bessel functions (17), 
we can express O~ with positive-frequency modes for large times (t ~ oo) 
in terms of O1 in the vicinity of the time singularity 

O?~o~ = ~(O~o~ - e*~iO&o~) = otO~0~ + 130~o) (38) 

where ~ is a constant. Taking into account the normalization condition, we 
have that the coefficients a and 13 satisfy the relation 

Itxl z + 11312 = 1 (39) 

and 
2 

showing that the distribution of spin-l/2 particles created by the background 
field (1) is thermal. Notice that the density of particles created can be obtained 
from (39) and (40), giving as result a Fermi-Dirac distribution. 

1 (41) 
n = [[~[2 exp(2"rrv/~, z + ~ )  + 1 

This result shows that the cosmological universe can create scalar as well as 
spinor particles in a thermal way. We have seen that the quasiclassical analysis 
developed in this article could be of help in the analysis of more realistic 
cosmological scenarios than the one used herein. It would be also possible 
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to consider the corrections to the thermal spectrum when electromagnetic 
fields are present (Villalba, 1995). This will be considered in a forthcom- 
ing publication. 
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